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The multiscale method [l] is used to investigate free oscillations of a conservative system with two 

degrees of freedom having cubic non-linearities (of symmetric nature) and close natural frequencies. 

Possible oscillation modulation regimes are found which depend on the coefficients of the system of 

differential equations, the energy and initial conditions. 

FOR SYSTEMS with two degrees of freedom which have quadratic non-line~ities, an internal 
resonance at the frequency ratio 1:2 has been studied, along with an internal resonance for 
systems with cubic non-linearities and the frequency ratio 1:3 [l]. In recent years attention has 
turned to mode interactions (of internal resonance type) for close natural frequencies. 
Experimental observations and solutions of particular problems show that this effect is 
relevant to the description of oscillatory processes in suspension bridges [2-4], cylindrical 
shells and other constructions [5-71. However, the Iiterature does not contain any general 
analysis of mode interactions of free oscillations in non-linear systems with close natural 
frequencies. In particular, we do not know what types of oscillation modulation are possible, 
what determines the degree and period of energy transfer in a system, what is the number of 
steady-state regimes (without modulation), which of them are stable, etc. 

1. AMPLITUDE-FREQUENCY MODULATION EQUATIONS 

Consider a non-linear oscillatory system (initially, for generality, with damping), described 
by the equations 

The frequencies o, and w, are assumed to be close, and the damping factors for the two 
modes are taken to be the same. 

Equations (1.1) give the general case of systems with sy~et~c potentials (when lo = 0) that 
include terms of the second and fourth degree. They are similar to the Duffing equation for 
systems with one degree of freedom and describe a broad class of mechanical systems. (For 
generality, no restrictions are imposed on the coefficients b,.) 

In accordance with the multiscale method we introduce “fast” and “slow” times TO =t, 
q = &To, T2 = &TO. (The time I’, will not be necessary below.) We will seek a solution of system 
(1.1) in the form of an expansion 
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(terms of order s2 vanish for a system with cubic non~line~ities). 
The smallness of & and the frequency difference are introduced through the conditions 

jl.=E2*, iDt=w, 0+?2.,%r (1.3) 

wsing 
d/di=Qi-EDI +E~D,+..,(D~ =Wiq,,D, =araT,,iJ, =a/aT,j, 
d2 / dt’ = D~+2&D,-,D~+le2(2DoD~-+D~)+... 

we obtain the fohuwing systems of equations for the two a~rox~fions 

z$U~] +02qt =O 

D,& + U2uk3 = - 2QY (@z&1 + Wl I+ itru& + h2&&x - W4f 

(1.4) 

(1.5) 

(where i$ is the Kronecker delta). 
We will write the solution of system (1.4) in the form 

uk, = A,(&) exp(i~‘T~>+&(~) exp(-iWq) (1.6) 

(where the bars denote complex ~onju~a~on)~ 
Subs~tuting (1.6) into system flS), from the condition for there to be no sect&r terms in the 

resufting equations we have 

(where the prime denotes d~ferentia~o~ with respect to T,). 
Putting the compkx a~~Iitude in exponentiaI form Ak = j$a, ex~~~~~~ (k = 1, 2) we separate 

(1.7) into real and imaginary parts and obtain a system of equations governing the amplitude 
modulation and phase of both modes 

Having eliminated sin 2y we obtain from Eqs (1.8) the integral 

where the arbitrary constant E is proportional to the energy of the system (to a first approxi- 
mation). In particular, for a conservative system (p = 0) 

(1.11) 

From (1.9) we obtain the equation for the phase difference y 

8oy’ = (3b1, -2bt2)a:. + (242 -%&a;?2 +b,& -a,2)cos2y+4a (1.12) 

For further analysis it is convenient fl] to change to the new variable e = L$ IE (0 G 5 c 1). 
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Then from Eqs (1.9) with k=l and (1.12) we obtain a system of equations governing the 
amplitude-frequency modulation in 5, y variables 

5’=-2cL5+ro~(1-~)sin2y (1.13) 

y’ = gr, + r, + l-l-J (J$ - &cos2y 

Here 

r, = hzF (4&, r, = (3bii - 4b,2 + 3&) E (8c0)-’ 

I, =[(2bt2 -3bz)E+4al(8w)-’ 
(1.14) 

Without loss of generality we shall take r,, $0, because otherwise bU =0 and system (1.1) 
decompose into two decoupled equations. 

2. SOLUTION OF THE MODULATION EQUATIONS 

We will perform further analysis for the case of a conservative system @ = 0). Dividing the 
second equation of (1.13) by the first, we obtain 

dy ~(r,-rOc0s2y)+rz+p&c0s2y -= 
dS rO~(i-~)sin2y 

(2.1) 

The solution of this ordinary differential equation is 

(2.2) 

where C, the constant of integration, determines the trajectory in the (5, 7) plane-the 
“amplitude-phase portrait” of the system (the AP-portrait). Eliminating y from the first 
equation of (1.13) and (2.2), we obtain 

r~2(d5/d1;)2=F:(5)-F22(5) 

4 (5>= 5(1-5>, F2(5)= r,-1(r,52+2r2e-c) 

(2.3) 

The form of this equation is identical with that derived in [l] for the case when o, = 30,, but 
the functions 4(e) and F,(e) are of different form. 

The condition for the solution of Eq. (2.3) to exist 

(2.4) 

means that the solutions correspond to parabolic segments F,(t) inside the domain bounded 
by the parabolic arcs +4(c) over the interval [0, l] (Fig. 1). The points of intersection of the 
F,(c) parabolas with the 5 axis, as can be seen from (2.2), correspond to the condition 
cos2y=O, i.e. y=+(2n+l)rr/4 (n=O, 1,2,. . .), or the values 5 = 0 and 5 = 1. The points of 
intersection of the parabolas F,(k) and q(e) correspond to extremal values of the functions 
e(7”) and a,(T,), respectively (k=l, 2). It follows from Eqs (1.13) (for p=O) that at these 
points sin27 = 0 (if 5 + 0 and 4 f l), i.e. y = +1lrcl2 (n = 0, 1,2, . . .), and that the points on the 
lower curve (F, c 0) correspond to even values of n and those on the upper curve to odd 
values. Consequently, the minimum and maximum values of 5 governing the amplitude 
modulations and degree of energy transfer between the modes are equal to the roots of the 
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equations 2$(k) = +F&!,), i.e. the equations 

52(71; -X0)+5(& F2r,)+C=o (2.5) 

where the upper and lower signs correspond to points of intersection of the parabola F’(e) 
with the upper and lower curves *F,(i), respectively, while the value of C is governed by the 
initial values &, and yo. 

The solutions of Eq. (2.5) and the construction of a “character~tic graph” (Fig. 1) give a 
graphical representation of the oscillatory regime. There are two basic ways in which the 
curves F1(@ and +&(Q can intersect in a “coarse” system, corresponding to the two basic 
oscillatory regimes: 

1. both points of intersection lie on the same paraboIa +F,(Q or -q(c) (curves 1 and 2 in 
Fig. la); 

2. the parabola F,(t) intersects both the parabolas +F,(Q and -q(e) in the interval [0, 11. 
In the first case, the phase difference y will oscillate about the value y = +nxl2. Synchron- 

ization of the oscillations proceeds “on average” over the modulation period: at the times 
when the extrema a, and a, are achieved the oscillations of both degrees of freedom proceed 
either in phase or in antiphase, if both points of intersection lie on the lower branch, or the 
phase difference at these instants is equal to x/2, (3x12) if both points lie on the 6 2 0 branch. 

In the second case the phase difference increases monotonically, running through the 
sequential values nrc12 (n = 0, 1, . . .) at the extremal times. These two types of oscillatory 
regime with oscillating and monotonically increasing phase differences will respectively be 
called modulations of the first and second type. 

The solution of Eq. (2.3) has the form 

~~t[~‘(~)-F:(S,rXds ‘G--&or 50 =~(Tio) (2.6) 

Suppose L . . . , 5, are the roots of the fourth-degree polynomial I;;“(c) - &*(Q, arranged in 
increasing order, with 5,. and & lying inside the domain bounded by the parabolas fF,(c). The 
modulation semiperiod (for the oscillating phase case) corresponds to 5 varying over the 
interval (&., &) and so the modulation period is equal to 

(2.7) 

For “non-coarse” systems one must consider singular cases for the position of the F,(g) 
curve (Figs lb and c): the passage of F2(Q through the points 5 = 0 or 5 = 1 (Fig. lb), and 
“external” or “internal” touching of the parabolas e,(t) and F,(e) (corresponding to lines 1 
and 2 in Fig. lc). In these cases two of the roots 4, coincide: in the first case 5, = 5, = 0 or 

(a) (b) 

Fro. 1. 
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4, = 4, = 1, and in cases 2 and 3 & = c3. Because the improper integral in (2.7) diverges when 
two of the kj roots coincide, the modulation period tends to infinity as these regimes are 
approached. These are ‘“boundary” regimes separating modulations of the two types distin- 
guished above (lines 1 and 3) and associated with separatrices in the (5, y) plane, or regimes of 
stationary oscillations without m~ulation (curve 2). We remark that the “aperiodic” 
oscillations described in [4] correspond to these boundary regimes. 

3. STATIONARY POINTS, SEPARATRICES AND AMPLITUDE-PHASE PORTRAITS 

We will consider possible AP-portraits in the (4, y) plane which are given by integral (2.2) 
and which graphically describe the oscillatory modes of the system. 

Stationary points corresponding to oscillations with no modulation are found using (1.13) 
from the system of equations 

&(l-Qsin2y=O (3.1) 
@-,+r*+r,(~-~)cosz~=o 

which can have the following solutions 

5=0, coszy = -2r, / r, (32) 

5=I, cos2y= -2CPi +I9/rc (3.3) 

y=bnx/2 (n=0,1,2,...), 4=5~=(+r,/2-r2)/(r,4ro) (3.4) 

These solutions exist when the following conditions are satisfied 

Using the periodicity with respect to y we will confine ourselves to the plane rectangle 
(0 d 5 c 1, 0 d y c rc). The stationary points (3.2)-(3.4) can be positioned on the boundary lines 
of this rectangle and on the mid-line y=rc/2 (with not more than one point on a line). It is 
easiest to investigate the nature of a sta~ona~ point with the help of (2.2), considering the 
form of the integral curves in a neighbourhood of the stationary point. The stationary points at 
5 = 0 and 4 = 1 are saddle points and therefore unstable. From this it follows that the presence 
of a second degree of freedom makes oscillations along the first generalized coordinate 
unstable if the stationary points (3.2) or (3.3) exist. 

In the neighbourhoods of stationary points on the lines y = +nx/ 2 the trajectories can be of 
either elliptic of h~rbolic type, and consequently, these stationa~ points can be stable or 
unstable. The stability conditions for odd and even n, respectively, have the forms 

On the characteristic graph Fig. l(c) the “externally” touchi~ hy~rbolas (curve 1) corres- 
pond to stable stationary points and the “internally” touching ones (curve 2) to unstable 
points. 

Stationary points on the y = +nnl2 lines correspond to synchronous single-frequency 
modes, i.e. normal oscillations of the non-linear system [8]. It follows from (1.2) and (1.6) that 
points on the lines y = 0 and y = x correspond in the (4, ~2) configuration space to the two 
straight lines u, = +hy, where 
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Stationary points on the y = n/2 and 3x/2 Iines correspond to the ellipses 

(3.9) 

and points on the 5=0 and &= 1 lines correspond to straight lines along the 0% and OU, 
axes. 

The separatrices pass through the possible unstable stationary points. For separatrices 
passing through the “left” points (3.2) one should put C = 0 in (2.2). We obtain equations for 
two branches 

(1) 4=0* (2) coszy=_(5~~~2~,)f[~*(~-S)f (3.7) 

which exist when condition 1 of (3.5) is satisfied. A “right” separatrix, passing through the 
stationary points (3.3), exists when condition 2 is satisfied. The equations of the branches of 
this separatrix are obtained from (2.2) with C = r, + 2r, 

fl) 5= 1, (2) cos 2Y = r(5 + I> r, + 2r, 3 I C&S> (3.8) 

The central separatrix (CS) passing through the stationary points (4.3) for odd (or even) n 
exists when condition 3 (condition 4) is satisfied and condition 5 (condition 6) is violated. 
Substituting the coordinates of point (3.4) into (2.2), we obtain C = (-l?, k r, / 2)2 /(X0 - r,) and 
equations for the branches of the central separatrix 

B= 
I-* cos2y + r, ir2 T r, / 2j2 
r,c0s2y-r, ’ D= (r, *row, -roc0s2y) 

The stationary points and separatrices possess the following properties. 
1. If “left” stationary points (3.2) exist (i.e. condition 1 is satisfied), then in the rectangle 

(0 d 5 G 1, 0 G y <z) there is at least one “intermediate” stationary point (3.4) on the line 
y = x/ 2 or y = 0, and this point is stable. 

Indeed, when condition 1 is satisfied the sign of the n~erators in condition 3, 4 is given by the sign of 
their first term, and for their moduli we have tS,/Z-r, ISI l?, I, if the signs of r, and r, are the same, 
then the sign of the denominator in condition 3 is the same as the sign of the numerator, and because we 
then have I r, + r, b-1 r,, I, condition 3 is satisfied and, clearly, condition 5. In the case of unlike signs for r, 
and r,,, the signs of the numerator and denominator in condition 4 are the same and I r, -r, bl r,, I, SO 

that conditions 4 and 6 are satisfied. 

A similar assertion holds for the “right” stationary points (3.3). 
2. If one stationary unstable point (3.4) exists on the line y= z/2 (or y =0), then a stable 

stationary point exists on the line y = 0 (or y = x/2); here there are no separatrices (3.7) and 
(3.8). 

Suppose condition 3 is satisfied and condition 5 is not satisfied (i.e. the stationary point at y = ~f2 is 
unstable). Then r, and fl have unlike signs and I r, I>1 I-4, I. It follows from condition 3 (because the sign 
of the denominator is governed by the sign of r, and is opposite to the sign of r,) that the signs of r, 
and r, are the same and I II, IA r, I /2. Condition 1 is therefore violated. Considering the cases r, > 0 and 
1-, c 0 separately, and taking into account that the sign of r, is opposite to the signs of r,, and r, and that 
I r, IA r, I, we find that in both cases condition 2 is violated, and the (right) inequality in condition 4 is also 

violated, which proves the assertion. 
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These properties enables us to describe the various possible AP-portraits in the (5, r) plane. 
Each side separatrix (SS) joins two unstable stationary points at 5 = 0 or 5 = 1. The branches 
of these separatrices surround a single stable stationary point at y = lc12 or y = 0 (0 c 5 c 1). 
One can verify that if, for example, between the “left” separatrices there is a point on the line 
y=O, then the abscissa of the point of intersection of the separatrix with the line y = 0 is 
double the abscissa of the stationary point 5.; it is obvious that 4 <X. A similar property is 
satisfied by the right separatrix: here it is necessary for the stationary point surrounded by its 
branches to be in the right half of the rectangle. The separatrix emerging from 5 = 0 cannot 
intersect the line 6 = 1, and conversely. 

The branches of the CS join the two unstable stationary points (3.4), corresponding to even 
or odd values of n, and surrounding the stable stationary point. The CS cannot intersect the 
lines 5 = 0 or 5 = 1. Inside the domains surrounded by the SS or CS a modulation regime of 
the first type exists, and outside these domains, a regime of the second type. 

Thus four qualitatively different types of AP-portrait are possible, governed by conditions l- 
6, and they are shown in Fig. 2. 

1. Conditions 1 and 2 are satisfied. There are stable stationary points at y = m/2 (3.4) for 
even and odd n, in the left section (5 < a and right section (5 > fl of the rectangle, i.e. three 
stable normal modes exist (and two trivial unstable ones u, = 0, k= 1, 2). Each of the 
stationary points is “captured” by the corresponding SS; there are no CS (Fig. 2a). 

2. Only one of conditions 1 and 2 is satisfied. There is a stable stationary point (3.4) only for 
an odd or even n, and only one SS (on the left if condition 1 is satisfied, and on the right if 
condition 2 is satisfied); there are no CS (Fig. 2b). Of the normal modes, apart from a single 
u, = 0, k = 1 or k = 2 mode, stable modes also exist that are either rectilinear (if condition 4 is 
satisfied), or elliptic (when condition 3 is satisfied). 

m --- ----- 
Q u ? 

(a) (b) 

FIC3.2 

(cl (4 

(4 
4’ 2’ 3’ 

FIG. 3, 
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3. Neither condition 1 nor 2 is satisfied, but condition 3 is satisfied. The stable and unstable 
stationary points (3.4) alternate (with the point for odd n being stable if condition 5 is 
satisfied). There is a CS, but no SS (Fig. 2~). Three normal modes exist, where either the 
rectilinear one is stable (when condition 6 is satisfied), or the elliptic one (when condition 5 
holds). 

4. Conditions l-3 are not satisfied. There are no stationary points (normal modes) or separa- 
trices. All oscillatory modes are of modulation type 2, with the modulation being relatively 
small compared with cases l-3 (Fig. 2d). 

In cases l-3 one can distinguish subcases. In case 1 there are two subcases distinguished by 
the position of the left stationary point: on the y = 0 line or on y = x/2. Similarly, in case 3 the 
stationary point can be stable at y = 0 or at y = x/2. Four subcases are possible for case 2: a left 
or right separatrix, and a stationary point at y = 0 or y = a/2. The corresponding AP-portraits 
can be obtained from those shown in Fig. 2. 

4. THE INFLUENCE OF FREQUENCY “SEPARATION” ON 
SYSTEM BEHAVIOUR 

We introduce the parameters 

aI = 41 fb12? a2 = b,, /h2, a0 =4al@d) 

Then conditions l-6 can be represented in the form 

(1)3a2-3<o”G3a,-1 

(2) -3u,+1~o” C-301,+3 

(3)-3a,+lGa”<3a2-1 for aI+cx2 >g 

3a2-l<o’s-3a,+l for o.,+a, c$$ 

(4)3a2-3so"c-3a,+3 for a,+a,<2 

-3a,+3Co"S3a2-3 for al+a2 >2 

(W,+a2>% 

(6)o,+012 <2 

(4.1) 

(4.2) 

Unlike o and E, the dimensionless frequency separation parameter o” does not depend on 
the choice of E and can be written in the following form 

a"=4cr,b;:[u,2(0)+u,2(0)]-', (cr,=e20=&o$) (4.3) 

As can be seen from (4.2), the type of AP-portrait is determined from the relative positions 
of the points 

cl = 3a, - 3, c2 = %X2-1, d,=-3a,+l, &=-_a,+3 (4.4) 

and the quantity CT’. Four possible positionings of the intervals (cl, cJ and (4, d,) are shown 
in Fig. 3 (c, c: 4, c, < 4 c c,, c, <d, cc,, d, CCJ. The type of AP-portrait (easily determined 
from (4.2)) is shown above the intervals. In case (a) the interval (c,, 4) contains the stable 
stationary point at y = O(a) (i.e. the rectilinear normal mode) is stable, and the unstable one is 
at y = x/2 (31c/2) (i.e. elliptic). In case (d) these points (and normal oscillations) “exchange” 
stability. 
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Figure 3 graphically demonstrates the influence of the parameter o” on the system behavi- 
our. If CT’ lies in the interval 

61 < 6’ < 62, 6, =‘min(q,d,). 6, = max(cs.4) (4.5) 

then we have AP-portraits of types l-3 with stationary points and pronounced modulation of 
the amplitude and phase (energy exchange). If cs” lies outside this interval, an AP-portrait of 
type 4 is indicated with relatively small modulation. Thus condition (4.5) allows one to specify 
the concept of small frequency separation. The minimum width of interval (4.5) is 2. The 
centre of the interval is the point 

In the case when bll = b2 we have a, = a, : a = 0, i.e. interval (4.5) is symmetric about the 
origin. 

If a, z a, the interval is displaced relative to the origin and for sufficiently large I a2 - a, I (or 
I bp - bll I) the point o” = 0 can turn out to lie outside the interval. One must also take into 
account that the sign of o” is governed by the sign of by (one can always put o. > 0, i.e. 
o, > CL+). The sign-constancy condition on o” singles out either the positive or negative part of 
interval (4.5) (if it exists). Two conclusions follow from this: 

1. it is not necessary for the larger modulation to correspond to the smaller value of o. : 
combinations of the coefficients bq are possible with AP-portraits of types l-3 for intervals 
with CT’ far from the point 0; 

2. for certain combinations of bij only type 4 AP-portraits are possible, irrespective of the 
energy and frequency separation. 

In the above analysis there is a natural separation of the influence on the energy exchange of 
the oscillation energy and the ratio of the initial amplitudes of the two modes. The quantity E 
acts on o” according to (4.3) (increasing E being equivalent to decreasing CJ), and together 
with o. it therefore determines the type of AP-portrait. The initial amplitude ratio 4, deter- 
mines the phase trajectory in a given AP-portrait. 

Consider the special case when bll = $ = 0, b, # 0. Then a, = a2 = 0, c, = -3, c, = -1, dl = 1, 4 = 3, i.e. 

we have Fig. 3, case (a). Condition 5 is not satisfied, while condition 6 is satisfied. For -3 < o” c -1 we 

have a type 2 AP-portrait with left separatrix and stable stationary point at y = O(x), i.e. with rectilinear 
normal oscillations. For -l< cr” < 1 the AP-portrait is of type 3 and has a stable stationary point at 

y = O(n) and an unstable one at y = x12 (3x/2), i.e. with stable rectilinear normal modes and an unstable 
elliptic mode. When 1 c CT’ < 3 the AP-portrait is of type 2 with a right separatrix and stable rectilinear 

normal modes. Finally, for cr” e -3 and o” > 3 the AP-portrait is of type 4. 
In conclusion we note that numerical integrations of Eq. (l.l), performed for the purpose of estimating 

the accuracy of the solution obtained by the multiscale method, demonstrated almost complete agreement 
between the analytic and numerical solutions in all the cases considered with an arbitrary choice of E =G 0.1 
and amplitudes of up to 0.5 (the error in determining the amplitude being of the order of 0.1%). But when 
E was increased beyond 0.1, the error increased rapidly. For example, when E = 0.15 the error in the 

amplitude computation reached 30%. 
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